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Abstract 

In this paper, we formulate the flexibility analysis with measured and unmeasured 
parameters as a rigorous multi-level optimization problem. First, we propose to 
recursively reformulate the inner optimization problems by the Karush-Kuhn-Tucker 
conditions and with a mixed-integer representation of the complementarity conditions to 
solve the resulting multilevel optimization problem. Three types of problems are 
addressed and solved with the proposed strategy: 1) linear programming problem, 2) 
nonlinear programming problem with monotonic variation of unmeasured uncertain, and 
finally 3) nonlinear programming problem. We illustrate the new formulations with a heat 
exchanger network problem with uncertain heat capacity flowrates. 

Keywords: extended flexibility analysis, optimization under uncertainty, MINLP 
formulation. 

1. Introduction 

Traditionally, the approach to handle uncertainty in the parameters of a model is to 
consider nominal conditions in plant operation, and use overdesign to compensate for the 
potential impact of the uncertainty. In contrast, flexibility analysis addresses the 
guaranteed feasibility of operation of a plant over a range of conditions, with the ultimate 
goal being on how to design a process for guaranteed flexible operation (Grossmann et 
al., 2014). The flexibility test problem only determines whether a design does or does not 
meet the flexibility target. To determine how much flexibility can be achieved in a given 
design, the flexibility index is defined as the largest value of 𝛿 such that the model 
inequalities hold over the uncertain parameter range (Swaney and Grossmann, 1985). 

However, these formulations are based on the assumption that manipulated variables can 
compensate for any variation in the uncertain parameter set and that during operation 
stage uncertain parameters can be measured with precision to take the corrective action. 
Ostrovsky et al. (2003) and Rooney and Biegler (2003) extended the analysis by taking 
into account the level of parametric uncertainty in the mathematical models at the 
operation stage, by grouping the uncertain parameters, 𝜃 ∈ Θ, into two types, measured 
and unmeasured parameters. The flexibility constraint was then extended to account for 
model parameters, 𝜃u, that cannot be measured. 
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In this paper, we propose a new reformulation of the extended flexibility analysis where 
the innermost problems are recursively replaced by their optimality conditions and the 
complementarity conditions are expressed with a discrete representation. 

2. Mathematical Model  

The basic model for the flexibility analysis involves design variables, 𝑑, control variables, 
𝑧, and uncertain parameters, 𝜃. One of the main problems addressed in the flexibility 
analysis is the flexibility test problem. It consists in determining whether by proper 
adjustment of the control variables the process constraints gj(d,z,𝜃)≤0, j ϵ J, hold for any 
realization of uncertain parameters for a given design (Halemane and Grossmann, 1983). 
This statement can be expressed with the logic expression (1), and is reformulated by the 
use of min and max operators as shown in Eq. (2). 

z ( j J [g (d,z, ) 0])j       (1) 

d max max g (d,z, )j
z j J

min
 

      (2) 

The main difference between the design and control variables is that the design variables 
are fixed during the operation stage, while the control variables can be adjusted in order 
to satisfy process constraints. In fact, to solve the flexibility constraint it is required to 
have accurate estimation of the uncertain parameters. This can only be achieved if there 
is enough process data for precise determination of all uncertain parameter values. 
However, this assumption is restrictive, and is often not met in practice. 

To address these limitations, two groups of uncertain parameters are identified. The first 
group of uncertain parameters contains parameters whose values can be determined to 
within any desired accuracy at the operation stage, namely the measured uncertain 
parameters, 𝜃m. Meaning that appropriate sensors are available to determine accurate 
values of all the uncertain parameters by direct measurement or by solving parameter 
estimation problems. Therefore, recourse action can be taken in order to compensate for 
their variation. Examples of this type of parameters include process conditions such as 
feed flowrates, pressures, temperatures, concentrations, and input variables such as 
product demands. The second group includes the unmeasured uncertain parameters, 𝜃u, 
whose estimation cannot be performed during the operation stage, consequently no 
control actions can be applied to them.  

This distinction has been taken into account and the flexibility constraint was then 
extended to Eq. (3) and reformulation as the multilevel optimization problem described 
by Eq. (4) by Ostrovsky et al. (2003) and Rooney and Biegler (2003). 

z ( , j J [g (d,z, , ) 0])m m u u j m u            (3) 

d max max max g (d,z, , )
m m u u

j m u
z j J

min
    

       (4) 

To solve the extended flexibility analysis, Ostrosvky et al. (2003) suggested an algorithm 
for calculation of the flexibility function based on the branch and bound strategy, while 
partitioning the uncertain set into subregions. On the other hand, Rooney and Biegler 
(2003) proposed an extension to the approach presented by Raspanti et al. (2000), which 
involved the use of the KS smooth function (Krelsselmeler and Steinhauser, 1983) that 



New MINLP Formulations for Flexibility Analysis for Measured and Unmeasured 
Uncertain Parameters  3 

aggregated all of the model inequality constraints, and the KKT derivation together with 
a smooth approximation of the complementarity conditions for the inner optimization 
problems. Therefore, the extended flexibility constraint resulted in a nonlinear program. 

In this work, we reformulate the extended flexibility constraint by developing the 
optimality conditions for each nested problems. In addition, in order to make the 
formulation tighter, the bounds of the nonnegative Lagrange multipliers related to the 
inequality constraints and the bounds on the slack variables are treated as constraints of 
the following level optimization problem. Finally, we express the complementarity 
conditions with a mixed-integer representation and assume that the Haar condition holds, 
which states that the number of active constraints is equal to the dimension of the control 
variables plus one. This condition holds true provided the Jacobian is full rank 
(Grossmann and Floudas, 1987). 

In the following subsections, we derivate the formulation of three different cases, linear 
problem, non-linear problem with monotonic variation of unmeasured parameters with 
respect to model constraints, and non-linear problems. 

2.1. Special Case 1: Linear Programming problem 

The order of the inner max operators in Eq. (4), are interchangeable and can be 
equivalently expressed as follows. 

d max (d, )
m m

m
 

     

				s.t (d, ) min (d,z, )m mz
     

s.t:	 (d,z, ) max max g (d,z, , )
u u

m j m u
j J


  

    	

(5) 

We consider that the inner problem is described by the linear inequality constraints: 

g (d,z, , ) = a 0,j m u j j j u j md b z c d j J             (6) 

Constraints gj in Eq. (6) vary monotonically with respect to 𝜃u. Hence,  the solution of the 
innermost problem must lie in one of the extreme points of its range of variation, 
depending on the sign of the derivative, dgj/d𝜃j,u. 

*
, ,max g ( )

u u
j j u j u 
    (7) 

The bilevel problem M1 described by Eq. (8) is obtained by replacing Eq. (7) in Eq. (5). 
To obtain a single level optimization problem, the innermost problem of Eq. (8) is 
replaced by its optimality conditions with a mixed integer representation of the 
complementarity condition following the active constraint set strategy (Grossmann and 
Floudas, 1987). This yields the MILP problem: 

d max (d, )
m m

m
 

      

				s.t: *
,,

(d, ) min( g (d,z, , ) = a , )m j m u j j j j u j mz u
u d b z c d u j J                (8) 

Where u is a scalar variable that represents the worst constraint violation.  
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2.2. Special Case 2: Non-Linear Programming problem with monotonic variation of 
unmeasured uncertain parameters 

If the set of functions gj(d,z,𝜃m,𝜃u) varies monotonically with respect to the unmeasured 
uncertain parameters, then the relationship expressed by Eq. (7) holds true. Therefore, the 
solution of the innermost problem lies at an extreme point of the range of variation of 𝜃u. 
Analogously, the following bilevel programming problem M2 is obtained and then 
reformulated in the same way as the previous case, but leading to the MINLP problem. 

d max (d, )
m m

m
 

       

				s.t: *
,

,
(d, ) min( g (d,z, , ) , )m j m j u

z u
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(9) 

2.3. General Case: Non-Linear Programming problem 

The extended flexibility constraint can be equivalently expressed as the following multi-
level optimization problem M3.  

d max (d, )
m m

m
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						s.t:	 (d,z, , ) min ( g (d,z, , ) , )m u j m uu
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(10) 

In order to solve Eq. (10), we propose to replace the inner problems by their optimality 
conditions in a recursive fashion. Due to space limitations, we cannot report the complete 
reformulation. To illustrate the solution strategy, we will replace the innermost problem 
of Eq. (10) by its KKT conditions (Eqns. (11) and (12)) and complementarity conditions 
(Eq. (13)). Bounds of the Lagrange multipliers, λj0, and slack variables, sj0, are added as 
model constraints of the next level optimization problem, described by Eqns. (14) and 
(15), in order to tighten the formulation. 

01- 0jj
    (11) 

* 0
,g (d,z, , )- 0j m j u ju s     j J   (12) 

0 0 0j js    j J   (13) 

0 0j   j J   (14) 

0 0js   j J   (15) 

Following this procedure, we obtain a single level optimization problem. The 
complementarity conditions are then expressed with a mixed integer representation, the 
Haar conditions is assumed, leading to an MINLP problem. 

3. Numerical Example 

A well-known example in the flexibility analysis literature is the heat exchanger network, 
shown in Figure 1. Grossmann and Floudas (1987) used this example to introduce the 
active set strategy, which is able to find non-vertex solutions. After the elimination of the 
state variables, the reduced model consists of four constraints, and three variables: the 
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cooling load (Qc) is the control variable and the heat capacity flowrate of streams 1 and 2 
(FH1 and FH2) are the uncertain parameters. We solve a modified version the problem for 
three cases. First, considering both uncertain parameters as unmeasured, so no recourse 
actions can be taken. Second, considering 𝜃1 as a measured uncertain parameter and 𝜃2 as 
an unmeasured uncertain parameter, where control actions can only be adjusted to 
compensate for variations in 𝜃1, solved with the proposed formulation. Finally, we 
consider both as measured uncertain parameters like in the traditional flexibility analysis. 

  
(a) (b) 

Figure 1. (a) Heat exchanger network scheme. (b) Feasibility diagram for fixed value of FH2=2 

Numerical results are summarized in Table 1Table 1. As we can see, we obtain positive 
values of 𝑢 for all the cases, indicating an infeasible design. The worst constraint violation 
(u=138.5) is obtained for the case of no recourse actions. This value can be reduced up to 
certain degree (u=20) when control variables can compensate for the variations in 𝜃1. 
Furthermore, this can be reduced (u=7.08) when recourse actions can compensate for 
variation in both uncertain parameters. It is also important to note, that non-vertex critical 
points are obtained for the second and third cases. The different problems are 
implemented in GAMS 25.1.2 (GAMS Development Corporation, 2018) and solved with 
BARON 18.5.8 (Kilinc and Sahinidis, 2018) in an Intel i7 machine with 16 Gb of RAM. 
The tolerance of the solver is set to 0.01 and the big M value is 600. 

Table 1. Worst constraint violation, critical parameters values for three examples and model size.  
Both unmeasured 

uncertain parameters* 
𝜃u=𝜃1, 𝜃2 

Combined type of 
uncertain Parameters 

𝜃m=𝜃1,𝜃u=𝜃2 

Both measured 
uncertain Parameters 

𝜃m=𝜃1, 𝜃2 
u 138.5 20 7.08 

𝜃1= FH1 1 1.333 1.398 
𝜃2= FH2 1.95 2.041 2.034 
#bin var 4 36 6 

#cont. var 12 161 22 
#constraints 13 163 21 
CPU time 0.01 1.67 0.09 

*For a fixed value of z. 

4. Conclusion 

In order to obtain more realistic results when dealing with operation under uncertainty, a 
distinction of the uncertain parameters can made between the measured and unmeasured 
uncertain parameters. Thus, the traditional flexibility constraint has been extended. In this 
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work, we have proposed new reformulations of the resulting multilevel optimization 
problem, which involves the replacement the innermost problem by its optimality 
conditions in a recursive fashion and the introduction of a mixed-integer representation 
of the complementarity conditions, resulting in an MINLP problem. 

We have developed the formulation of three different cases, linear problem, non-linear 
problem with monotonic variation of unmeasured parameters with respect to model 
constraints, and non-linear problems. A particular feature of the first two cases is that the 
worst constraint violation lies at a vertex of the unmeasured uncertain parameter set; 
where the formulation can be simplified, leading to a similar formulation as the one 
obtained by applying the active set constraint strategy, namely the traditional flexibility 
analysis (Grossmann and Floudas, 1987). An example of a heat exchanger network has 
been presented to illustrate the proposed reformulation of the general case and compared 
to cases with different degree of recourse actions. 
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